Давление в турбине дизельного двигателя

Как самому проверить турбину на дизельном моторе

Необходимость проверить турбину дизельного двигателя своими руками может возникнуть по ряду причин. Выполнение диагностики турбокомпрессора на СТО зачастую потребует определенных финансовых затрат, так как специалисты в большинстве случаев подключают диагностическое оборудование, снимают турбину с двигателя для проверки.

Чтобы выявить неисправности самостоятельно без снятия турбины, можно воспользоваться несколькими способами диагностики. На проблемы с турбокомпрессором могут указывать следующие прямые или косвенные признаки, которые проявляются в процессе работы силового агрегата:

  • появление черного, сизого или синеватого дыма выхлопа;
  • дизель шумно работает в разных режимах под нагрузкой;
  • повышается температура, мотор склонен перегреваться;
  • возрастает расход горючего и моторного масла;
  • двигатель теряет мощность, падает тяга и динамика;

В самом начале стоит отдельно отметить, что подобные симптомы могут возникать не только по причине неисправностей турбины, но данный элемент также находится в списке.

Визуальный осмотр

На начальном этапе диагностики следует проверить уровень и качество дизельного моторного масла. Также необходимо исключить возможное попадание сторонних предметов в турбокомпрессор.

Далее приступаем к анализу цвета выхлопных газов. Падение мощности и черный цвет выхлопа дизеля говорит о переобогащении смеси. Это может указывать на недостаточное количество подаваемого в цилиндры воздуха по причине неисправностей во впуске. Тяга дизельного мотора может также пропадать в результате утечек на выпуске.

Для проверки мотор необходимо завести и оценить звуки в процессе работы турбокомпрессора. Турбина не должна свистеть или скрипеть, не должно быть звука прорывающегося воздуха через соединения. Нужно проверить состояние и герметичность соединений патрубков, по которым осуществляется подача воздуха. Любые неплотности или повреждения недопустимы. Также обязательно проверяется состояние воздушного фильтра, так как загрязнение и снижение его пропускной способности приведет к недостаточной подаче воздуха в цилиндры.

Если дизель дымит белым или сизым выхлопом, тогда это указывает на попадание масла в цилиндры двигателя и его сгорание в рабочей камере. Подобная неисправность может возникать как по причине неисправностей турбокомпрессора, так и других узлов ДВС. Также на проблему указывает большой расход масла (около литра на 1 тыс. пройденных км.)

В этом случае необходимо снова вернуться к проверке воздушного фильтра и ротора турбины. Загрязненный фильтр пропускает малое количество воздуха, что приводит к сильной разнице давлений между корпусом турбины и картриджем с подшипниками. Из этого картриджа масло начинает вытекать в корпус компрессора. Если неисправностей не выявлено, тогда нужно приступить к осмотру сливного маслопровода на наличие загибов, трещин и других дефектов.

Еще одной причиной роста давления может служить активное попадание газов из камеры сгорания в картер двигателя, что препятствует нормальному сливу масла из турбины. Данная неисправность может быть связана с проблемами в работе системы вентиляции картерных газов, дизель начинает сапунить. На моторе с исправной турбиной во впускном и выпускном коллекторе не должно быть признаков обильного попадания масла.

Снова проводим анализ состояния турбины на осевой люфт. Если с компрессором все в норме, тогда причины наличия масла в турбине заключаются именно в повышении давления в картере двигателя. Дополнительно возможно присутствие пробки в сливном маслопроводе.

В случае шумной работы дизеля нужно проверить трубопроводы, через которые воздух подается под давлением, а также ротор турбокомпрессора. Ротор турбины во время прокрутки не должен касаться стенок. Повышенного внимания заслуживает состояние крыльчатки турбины. Любые зазубрины или признаки повреждений крыльчатки требуют немедленного ремонта компрессора. При обнаружении заметных дефектов ротора турбину необходимо снимать для детальной диагностики.

Проверка турбонагнетателя на заведенном двигателе

Проверять турбину на наддув следует так:

  • пригласите помощника;
  • запустите двигатель;
  • определите патрубок, который соединяет впускной коллектор и турбокомпрессор;
  • пережмите указанный патрубок рукой;
  • помощник должен погазовать несколько секунд;

Если компрессор работает, тогда патрубок должен будет ощутимо раздуваться. При отсутствии производительности турбины этого не произойдет. Дополнительно следует оценить общее состояние патрубков, а также исключить возможность трещин и других дефектов впускного и выпускного коллектора дизельного двигателя.

Для чего охлаждать турбину перед остановкой двигателя. Особенности работы турбокомпрессора, температура выхлопных газов, охлаждение моторным маслом.

От чего зависит срок службы турбонагнетателя дизельного ДВС. Особенности и рекомендации касательно эксплуатации и ремонта турбин с изменяемой геометрией.

Назначение и конструкция турбокомпрессора дизельного мотора. Принцип работы турбонагнетателя, особенности использования турбины на дизельном ДВС.

Назначение, особенности конструкции, место установки регулятора давления топлива инжекторного двигателя. Признаки неисправностей РДТ, проверка устройства.

Распространенные неисправности дизельного двигателя и диагностика агрегатов данного типа. Проверка топливной системы дизельного мотора, полезные советы.

Линейка дизельных двигателей CRDi Hyundai/KIA: сильные и слабые стороны моторов данного типа, особенности эксплуатации, ремонта и обслуживания.

Как самому проверить турбину дизельного двигателя у легковых авто

Прежде чем говорить о том, как проверить турбину дизельного двигателя нужно прояснить некоторые базовые понятия. Разберемся что такое наддув, турбонаддув, как в принципе устроен турбокомпрессор. После этого перейдем к проверке исправности его работы.

О наддуве простыми словами

Часто про наддув говорят: «Это турбина загоняет в движок больше воздуха. Возрастает мощность и КПД». Совсем не так. Задача наддува — не повышение КПД, а повышение мощности и крутящего момента при том же объеме двигателя.

Наддув — это самое радикальное средство повышения мощности, которое достигается нагнетанием в цилиндры дизеля дополнительного воздуха, и соответствующем увеличении подачи топлива в том же диапазоне оборотов. Воздух без топлива не горит, и не увеличивает ни мощность, ни КПД, который расти не обязан, и может даже снижаться.

Итак, наддув это: воздух + топливо = мощность. Турбина воздух не гонит, его подает компрессор. Системы наддува различаются в частности по типу привода компрессора; Различают три вида наддува:

  • механический;
  • электрический;
  • турбонаддув.

На легковых автомобилях самый распространенный — турбонаддув. Его отличие от первых двух в том, что для привода компрессора он использует бросовую энергию отработавших газов. Механическая и электрическая системы для своих нужд отбирают полезную энергию мотора.

Принцип действия турбокомпрессора

Турбокомпрессор состоит из турбины и компрессора. Колесо турбины и крыльчатка компрессора сидят на одном валу в разных корпусах. Колесо турбины имеет лопатки. На них воздействует поток выпускных газов, и раскручивает колесо.

Через вал приводится в действие колесо компрессора, который нагнетает воздух в цилиндры двигателя. Вал турбокомпрессора установлен в подшипниках, к которым по главной масляной магистрали дизеля подается масло.

Скорость вращения вала турбокомпрессора не пропорциональна скорости вращения коленчатого вала двигателя. Она зависит от давления выхлопных газов.

Двигатель может работать на малых оборотах, но с большой нагрузкой. При этом компрессор будет подавать большое количество воздуха. Пропорционально массе воздуха подается топливо и мощность дизеля возрастает.

Геометрия

В современных автомобильных турбинах появилось такое понятие как «геометрия» — механизм, управляющий интенсивностью наддува. Посредством поворота специальных лопаток меняется направление потока выхлопных газов. На рабочее колесо попадает меньшее или большее их количество, меняется скорость вращения турбины количество нагнетаемого воздуха. Управляет этими элементами вакуумный клапан, или актуатор.

Примером таких машин могут быть Рено Меган 1.5 л., Ниссан Патфайндер 2.5 л. Система позволяет более тонко регулировать количество воздуха, получать высокий крутящий момент уже на низких оборотах.

Лопатки — подвижные и чувствительные элементы, которые работают в тяжелых условиях и постоянно омываются раскаленными газами, содержащими сажу. Они все время в движении и со временем изнашиваются: в их поворотных сопряжениях появляются люфты. Некогда точный механизм напоминает двери с разболтанными петлями — он уже не пригоден для регулировки.

При появлении большого количества нагара лопатки заклинивают и перестают двигаться. Остановившись в одном положении, система не может работать корректно.

Этот вариант неисправности следует учитывать при проведении диагностики. Может подвести вакуумный клапан: если его герметичность нарушена, он не сможет управлять геометрией.

На Nissan Pathfinder устанавливается электронный актуатор. В нем применяется червячная передача. Это компактный механизм, однако он обладает повышенным трением. Причина неисправности актуатора — механический износ червячного редуктора и возникновение большого зазора в червячной передаче.

Но если посмотреть еще глубже, то нагар на лопатках узла геометрии создает повышенное сопротивление и нагружает червячную пару.

Залог долговечности механизма в правильной эксплуатации двигателя, грамотном прогреве и езде на оптимальных режимах, ограничивающих нагарообразование.

Тревога бывает ложной

Обеспокоенность состоянием узла должна возникать в следующих случаях:

  1. потеря мощности;
  2. появление черного или синего дыма;
  3. повышение расхода масла;
  4. повышение расхода топлива;
  5. ненормальные звуки — скрежет, свист.

Признаки эти могут появляться как вместе, так и порознь. Они же могут быть не связанными с турбонагнетателем.

Перед началом диагностики необходимо убедиться, что воздушный и топливный фильтры в порядке.

Потеря мощности в сочетании с черным дымом говорит о переизбытке топлива или его плохом распыле, несвоевременной подаче, либо недостатке воздуха. Начинайте проверку с воздушного фильтра. Если черная копоть наблюдается на холостом ходу, или во время равномерной работы на небольшой мощности, дело скорее всего в топливной аппаратуре.

При неравномерной работе двигателя в первую очередь нужно понять, отчего не работает какой-то цилиндр.

Иногда на выходе из турбинной части, в месте соединения с приемной трубой, можно увидеть подтеки масла. При этом сизый дымок наблюдается на выхлопе. Не спешите выносить приговор. Дело в том, что масло в очень ограниченном количестве попадает в цилиндры. Там оно выгорает без следа. Но масло — не топливо, для его полного сгорания нужна высокая температура.

Если машина больше разогревалась на холостом ходу, чем ездила, в камере сгорания соответствующая температура не образовывалась. Масло раз за разом накапливается в цилиндрах, пока двигатель не начинает брызгами выплевывать его через выпускные клапана. В выхлопной магистрали оно тлеет, капает через неплотности.

Все что нужно сделать — дать двигателю нормальную нагрузку, не обязательно полную. Неполадка эта характерна для дизель-генераторов. Они часто работают на очень малых нагрузках, либо в холостую. У автомобилей это встречается гораздо реже.

Скрежет может возникать, если элементы рабочих колес цепляют за корпус. Свист говорит о неплотности воздушного тракта. Причиной может стать незатянутый крепеж: когда между разошедшимися фланцами попадается тонкая прокладка, звук получается пронзительный.

Как проверить турбину дизельного двигателя не снимая

Устойчивое вытекание масла из турбокомпрессора говорит о его неисправности:

  • Проверьте соединения системы — это может быть простая неплотность.
  • Внимательно осмотрите соединения трубок подвода/отвода масла.
  • Убедитесь в целостности трубки.
  • На заведенном двигателе пережмите патрубок, соединяющий компрессор со впускным коллектором.
  • Погазуйте — давление в нем должно повышаться. Если этого не происходит, следует искать негерметичность в системе.

Признаком износа подшипников является люфт вала:

  • Снимите патрубки с обеих или хотя бы одной сторон турбоагрегата,
  • Покачайте вал в радиальном направлении, сдвиньте его вдоль оси.
  • Обратитесь к руководству по ремонту за конкретными техническими нормами проверок.
  • Прокрутите рабочие колеса.
  • Послушайте, есть ли задевание элементов за корпус, (для этого не просто прокрутите лопасти механизма, а прижимайте при этом колеса за вал к разным сторонам корпуса).

При малейшем задевании турбоагрегат подлежит ремонту или замене. Осмотрите лопатки турбины и лопасти компрессора на предмет механических повреждений и абразивного износа.

Как проверить снятую турбину дизельного двигателя

Если турбина уже снята с двигателя, мы не можем тестировать ее на заведенном моторе. Зато осмотр на рабочем столе более наглядный. Механизм можно хорошо отмыть, тогда никакая трещина не укроется. У агрегата имеется два входа и два выхода, на каждом из которых можно обнаружить масло. Вот о чем это говорит:

Читайте также  Двигатель д242 технические характеристики

Как просто проверить работоспособность турбины на дизельном двигателе

Многие автолюбители сетуют на то, что диагностика турбокомпрессора — вопрос не совсем простой, так как его работа завязана на множество факторов, параметров работы других систем дизеля.

Ну как, например, проверить турбину дизельного двигателя при покупке. Вот если бы на приборной панели был манометр, позволяющий определять работоспособность узла. Продавец и покупатель сразу бы наглядно видели состояние агрегата.

Приборы, позволяющие измерить давление наддува есть. Некоторые любители устанавливают их в салон своего авто. В сети об этом есть видео.

А вот проверить этот показатель, когда машина стоит на месте, не выйдет. Без нагрузки мотор не получит нужного количества топлива, значит и поток выхлопных газов будет недостаточным. Рабочее колесо не разовьет должных оборотов, даже если полностью выжать акселератор.

Как проверить давление наддува турбины дизельного двигателя

Проверку можно организовать, имея диагностический сканер и ноутбук. Его легко подключить к автомобилю и в динамике отслеживать показатели давления наддува, сравнивать его с номинальными параметрами, и, успокоившись, решиться на покупку. В процедуре участвуют двое: водитель разгоняет машину, в то время как специалист анализирует ситуацию на экране.

По показаниям программы опытный диагност уже может сделать определенные предположения о неисправности узла. По результатам проверки специалист дает заключение, стоит ли снимать и разбирать турбокомпрессор и переходить к следующему этапу ремонта — дефектации.

Принцип работы турбины на дизеле

Принцип работы турбины на дизельном двигателе

Мотор, на который установлен турбонаддув, называется турбодизелем.

Устройство турбины дизельного двигателя

Турбокомпрессор выполняет задачу по нагнетанию воздуха под давлением в цилиндры мотора: чем больше будет воздуха, тем больше топлива силовой агрегат сможет сжечь, что, в свою очередь, приведет к увеличению мощности двигателя без увеличения объема имеющихся цилиндров.

Турбонаддув имеет особую конструкцию из двух элементов:

  • турбина;
  • компрессор.

Компрессор усиливает поступление воздуха в топливную систему. Составные части компрессора находятся в алюминиевом корпусе. Внутри находится ротор, закрепленный на оси турбины. Вращаясь, ротор вбирает воздух: большая скорость вращения приводит к большему количеству попавшего внутрь воздуха. Для набора скорости существует турбина.

Турбина состоит из корпуса с ротором внутри. Поскольку все элементы устройства взаимодействуют с газами высокой температуры, они изготавливаются из специальных материалов, невосприимчивых к такому воздействию.

Как работает турбина на дизельном двигателе

Ротор и ось, на которой он закреплен, вращаются в разных направлениях. Частота вращения довольно велика, поэтому элементы плотно прижимаются друг к другу.

Принцип работы турбины на дизельном двигателе следующий:

  • компрессор обеспечивает поступление воздуха из окружающей среды, который смешивается с дизельным топливом и затем направляется в цилиндры;
  • топливно-воздушная смесь загорается, начинают двигаться поршни. По ходу этого процесса образуются газы, поступающие в выпускной коллектор;
  • скорость движения газов, оказавшихся в корпусе, значительно возрастает. Вступая во взаимодействие с ротором, они приводят его во вращающееся положение;
  • вращение передается компрессорному ротору (за это отвечает вал), который снова втягивает новую порцию воздуха.

Таким образом, принцип работы основывается на взаимосвязи: чем сильнее вращается ротор, тем больше поступает воздуха, но при этом ротор увеличивает скорость вращения, если количество воздуха возрастает.

Как работает турбонаддув

Чтобы разобраться в работе турбонаддува, для начала следует уяснить понятия турбоподхвата и турбоямы.

Турбоподхват – ситуация, когда набравший скорость ротор увеличивает поступление воздуха в цилиндры, следствием чего становится повышение мощности двигателя.

Турбояма – момент небольшой задержки, наблюдаемый в работе турбины при увеличении количества поступившего горючего, что достигается нажатием на педаль газа. Задержка вызвана временем, которое нужно ротору для его разгона газами.

Турбонаддув увеличивает давление отработанных газов за счет более интенсивной работы двигателя. В то же самое время повышается и давление наддува: этот процесс требует контроля и регулировки, поскольку при достижении высоких значений велика вероятность поломки. Функции регулировки давления возложены на клапан, контролем предельно возможных значений занимаются мембрана и пружина с определенными значениями жесткости (когда достигается максимально допустимая величина, мембрана открывает клапан).

Работа турбины дизельного двигателя также требует контроля давления:

  1. компрессор через клапан, дабы снизить давление, сбрасывает лишний забранный воздух;
  2. когда давление поступившего воздуха достигает максимально допустимой величины, клапан выпускает газы, и ротор вращается с требуемой скоростью, а компрессор всегда забирает только нужное количество воздуха.

Минусы использования турбокомпрессора

У устройства есть определенные недостатки:

  1. возрастает расход топлива, что особенно ощущается при неправильной регулировке системы;
  2. температура в процессе сжатия повышается, что может привести к детонации. Чтобы избежать такой неприятности, необходим монтаж регуляторов, охладителей и ряда других элементов.

Турбированный мотор: правила эксплуатации

Чтобы дизельная турбина работала с максимальным КПД и как можно дольше не выходила из строя, нужно придерживаться определенных правил в процессе эксплуатации автомобиля:

  • придерживаться графика замены масла, что позволит не допустить засорения маслопровода абразивами;
  • использовать качественное моторное масло, соответствующее по характеристикам в паспорте двигателя;
  • не трогаться сразу после включения мотора – движок должен быть прогрет;
  • сразу после прекращения движения не выключать двигатель, дав ему хотя бы 10 секунд поработать на холостых оборотах.

Как работает турбина: видео

Что такое турбо-яма?

Крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.

Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.

Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.

Функция турбины, настройка

Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.

Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.

Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотным и содержит больше молекул, чем теплый воздух. Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.

Схема турбины с изменяемой геометрией (VNT)

Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.

Некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.

Система смазки

Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения. Благодаря этому достигается лучшее охлаждение.

Типы турбин

  • Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
  • Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.

Паровая турбина

Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.

Читайте также  Двигатели с турбонаддувом плюсы и минусы

Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.

Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

Принцип работы турбины на дизельном двигателе и ее устройство

Гениальная идея использования выхлопных газов для разгона ротора позволила создать турбированный дизельный двигатель внутреннего сгорания и увеличить его мощность на 40–50%. Это притом, что во время работы в обычном режиме выброс газов сопровождается снижением коэффициента полезного действия в пределах 30 — 40%.

Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

Конструктивные элементы системы

Для осуществления возложенных функций, система турбонаддува состоит из двух основных частей:

  1. Компрессор;
  2. Турбина.

Компрессор служит для нагнетания атмосферного воздуха в систему подачи топлива. Он состоит из корпуса и расположенной в нем крыльчатки, которая, вращаясь, всасывает воздух. Чем выше ее скорость вращения, тем больше объем принятого воздуха. Увеличению скорости способствует работа турбины.

Читайте также  Установка метана на дизельный двигатель

Она также состоит из корпуса с крыльчаткой (ротором), которая приводится в движение выхлопными газами. В корпусе газы проходят через специальный канал, имеющий форму улитки, что позволяет им увеличить скорость.

Как работает турбонаддув дизельного двигателя

Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

  • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
  • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
  • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
  • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

Регулировка давления наддува

Турбонаддув дизельного двигателя повышает его мощность за счет возрастания давления выхлопных газов, являющихся результатом увеличения числа оборотов и интенсивности работы мотора. Этот же процесс повышает давление наддува. Если его не регулировать, то на самых высоких оборотах оно может достичь опасных значений, приводящих к поломкам и механическим повреждениям.

Регулировка давления производится с помощью выпускного предохранительного клапана, а контроль максимально допустимого значения — с помощью мембраны и пружины определенной жесткости.

Суть работы: при достижении предельного значения давления, мембрана, установленная в корпусе компрессора, преодолевает воздействие пружины и открывает регулировочный клапан.

Давление регулируют как на стороне компрессора, так и на стороне турбины:

  1. Работающий турбокомпрессор сбрасывает в атмосферу через выпускной клапан излишки забранного воздуха, тем самым снижая давление.
  2. В турбине клапан выпускает отработанные газы под воздействием мембраны компрессора, когда давление всасываемого воздуха достигает максимального уровня. Благодаря этому, ротор вращается с установленной скоростью, а компрессор не забирает лишний воздух и не увеличивает давление.

Второй вариант расположения клапана позволяет изготавливать системы меньших габаритов. Кроме того, турбонагнетатель с клапаном в компрессоре подвержен чрезмерному нагреву из-за повышенной температуры выпускаемого воздуха, что негативно сказывается на эффективности его работы.

Поэтому турбонаддув дизельного двигателя чаще оснащают регулировочным клапаном в турбине, а регулировку в компрессоре используют в качестве дополнения.

Система смазки

Смазка вала турбонагнетателя осуществляется смазочной системой двигателя.

На вал устанавливают уплотнительные кольца, предотвращающие проникновение масла в полости корпусов компрессора и турбины. Они же предохраняют корпуса от перегрева. Но герметичность обеспечивается не столько уплотнениями, сколько разностью величины давления в различных частях агрегата. Эту разницу давлений создает турбинная ось (вал), имеющая неравномерный диаметр.

Особая форма литья корпуса, в котором расположен вал, также способствует удержанию масла.

Если мотор не развивает требуемую мощность, это может быть симптомом неисправности турбонаддува. Наиболее часто встречающиеся проблемы — загрязнение воздушного фильтра или потеря герметичности впускного коллектора. Кроме потери мощности, их можно диагностировать по несвойственному для исправной машины цвету и количеству дыма, выходящего из выхлопной трубы.

Недостатки турбокомпрессоров

Принцип работы турбины на дизельном двигателе создает и негативные факторы:

  • Повышенный расход горючего. Возможность сжечь большее количество солярки за счет увеличенного объема подачи воздуха, вместе с мощностью повышает и «прожорливость» машины. Уменьшить аппетит до разумных пределов позволяет правильная регулировка системы.
  • Положительные стороны наддува приводят к многократному повышению температуры во время такта сжатия, что может вызвать детонацию в двигателе. Решается эта проблема установкой охладителей, регуляторов и прочих элементов.

Правила эксплуатации

Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

  • Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
  • Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
  • Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
  • Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.

1500 бар — самое высокое давление в машине. И где оно?

Давление (и его антипод — разрежение) может возникнуть в любой замкнутой емкости — хотя бы из-за температурных перепадов. А если при этом задействованы механизмы, то колебания давления могут быть гораздо больше.

Любопытно, что даже в салоне машины давление воздуха обычно чуть выше атмосферного! Под воздействием вентилятора отопителя или скоростного напора воздух нагнетается в салон через дефлекторы. А в некоторых узлах и агрегатах оно выше в десятки раз.

Давление — движущая сила в автомобиле. Рассказываем, насколько велика его сила и что она может.

1. Камера сгорания — 60 бар (бензиновый мотор), 75 бар (дизель)

Этот параметр часто путают и с компрессией, и со степенью сжатия. Но это давление, которое возникает в момент сгорания топлива. Сильно «задирать» его нельзя, поскольку оно может разрушить кольца, вкладыши, клапаны. Тем не менее величина этого давления серьезная — даже у гражданских автомобилей.

2. Топливная система — до 1500 бар

В баке бензиновых и дизельных автомобилей поддерживается почти атмосферное давление. От изменений температуры или вследствие расхода топлива в нем может возникать легкое давление либо разрежение. В баке размещен насос, который подает топливо к двигателю с давлением не более 4 бар. В бензиновом двигателе с распределенным впрыс­ком топливо к форсункам поступает сразу, а в дизелях и моторах с непосредственным впрыском бензина в камеру сгорания стоят еще топливные насосы высокого давления. У бензиновых двигателей давление перед форсунками может достигать 100 бар. У дизелей давление после ТНВД может доходить до 1500 бар, и это самое высокое давление в автомобиле.

3. Система смазки двигателя — до 4 бар

Создается масляным насосом с приводом от коленчатого вала. При высокой частоте вращения насос обеспечивает избыточную производительность, поэтому ставят редукционный клапан для его регулирования. В последнее время всё чаще ставят насосы с переменной производительностью — они отбирают у мотора меньше мощности, ­экономят топливо и сокращают выбросы вредных газов в атмосферу.

4. Давление во впускном трубопроводе — до 2,5 бар

У наддувного двигателя (и бензинового, и дизельного) на минимальных оборотах холостого хода давление сравнимо с атмосферным, так как турбокомпрессор почти не вращается. Зато по мере роста нагрузки и оборотов двигателя турбокомпрессор выдает сначала номинальное давление, а затем пытается «перенаддуть» мотор. Но электронные и механические ограничители ему не дают развить большего давления — так возникает протяженная полка крутящего момента, очень удобная для управления тягой.

5. Система охлаждения двигателя — 1,5 бара

Образуется при нагревании охлаждающей жидкости. Давление ограничивает паровой клапан пробки радиатора или расширительного бачка. Это давление снижает риск закипания двигателя и уменьшает потери на испарение.

6. Разрежение во впускном трубопроводе — 0,8 бара

У атмосферного бензинового двигателя там всегда разрежение, которое возникает из-за дроссельной заслонки и сопротивления воздушного фильтра. Максимальной величины достигает при торможении двигателем. Большое разрежение возникает при минимальных оборотах холостого хода, малое — при полностью открытом дросселе.

7. Перед турбиной — до 2 бар

Для вращения турбокомпрессора используются отработавшие газы. Давление перед турбиной ограничивают, тем самым регулируя производительность компрессора: перепускной клапан отводит часть выпускных газов мимо турбины. Бывают и турбины с регулиру­емым сопловым аппаратом, управляемым электроникой.

8. Система выпуска отработавших газов — до 1 бара

Это давление возникает после выпускного коллектора у атмосферных моторов и после турбокомпрессора в наддувных. Оно обусловлено сопротивлением сот каталитического нейтрализатора. Существенно увеличивается при разрушении и оплавлении керамических сот, а также при механическом повреждении трубы системы выпуска.

9. Управление трансмиссией — 5 бар (АКП), 7,5 бар (вариатор), 60 бар (робот)

Речь о давлении рабочей жидкости для управления элементами коробок. Здесь и поршни, отвечающие за сжатие лент и пакетов фрикционов, и перемещение конусов вариаторов, и включение передач в роботах. Такой разброс обусловлен применением в роботах отдельного электрического насоса высокого давления.

10. Тормозная система — до 180 бар

В старых автомобилях без АБС давление в контурах тормозной системы определял водитель: как нажмет на педаль, столько и получится (с учетом помощи вакуумного усилителя). Сейчас же за этой физической силой следит АБС. Ее гидронасос может создавать давление до 180 бар, но это не значит, что такое давление постоянно напрягает тормозные шланги. Это необходимо для увеличения быстродействия механизма. На практике максимальным давление бывает лишь в экстренных случаях.

11. Система кондиционирования — 4 бара (при заправке), 20 бар (рабочее)

Принцип действия основан на переходах хладагента из жидкого состояния в газообразное при изменении давления. Однако при этом начальное давление в системе также необходимо. В результате работы компрессора давление в трубках может достигать 20 бар.

12. Разрежение в вакуумном усилителе — до 0,8 бара

Разрежение в нем не всегда равно разрежению во впускном трубопроводе, хотя они и соединены шлангом. Применен обратный клапан, который позволяет вакуумному усилителю «хранить запас разрежения» даже после остановки двигателя. Его хватает еще на несколько торможений.

13. Амортизаторы — до 30 бар

Прошли времена, когда при заделке крышки амортизатора в нем оставался атмосферный воздух. Теперь в амортизаторах используют инертный газ либо с небольшим давлением, либо со значительным газовым подпором. Если шток амортизатора можно легко вдавить руками, газовый подпор не превышает 1 бар. Газовый подпор приподнимает автомобиль и делает подвеску немного жестче.

14. Пневмоподвеска — 16 бар

В пневмоподвесках автомобилей давление обеспечивает насос, забирающий атмосферный воздух через фильтр. Обычно в пневмосистемах подвески легковых ­автомобилей используются давления, не превышающие 16 бар.

15. Газовые упоры — 120 бар

В газовых упорах, которые помогают открывать двери багажных отсеков и капоты, рабочим телом является азот, сжатый в некоторых изделиях до 120 бар. Любопытно, что наполняют газовые упоры, когда они полностью собраны, через штатное уплотнение штока, работа­ющее как обратный клапан.

16. Шины — 1,8–2,8 бара

Единственное давление, за поддержание которого ответственность лежит на водителе, а потому и нуждается в достаточно частой проверке. Шины несут основную нагрузку от массы автомобиля, от правильного давления в них зависит комфорт и безопасность.

Поэтому надо соблюдать рекомендации завода-изготовителя автомобиля.

  • Вы неправильно накачиваете колеса! Есть секрет — он тут.
  • Перед началом осенне-зимнего сезона стоит обзавестись щетками с обогревом BURNER. А чтобы боковые стекла оставались чистыми, нужен водосток лобового стекла.